Ứng dụng Chuỗi hình học

Số thập phân vô hạn tuần hoàn

Một số thập phân vô hạn tuần hoàn có thể được xem như là một chuỗi hình học với công bội bằng 1/10. Ví dụ:

0.7777 … = 7 10 + 7 100 + 7 1000 + 7 10 , 000 + ⋯ . {\displaystyle 0.7777\ldots \;=\;{\frac {7}{10}}\,+\,{\frac {7}{100}}\,+\,{\frac {7}{1000}}\,+\,{\frac {7}{10,000}}\,+\,\cdots .}

Sử dụng công thức tính tổng một chuỗi hình học có thể biến đổi một số thập phân vô hạn tuần hoàn thành một phân số:

0.7777 … = a 1 − r = 7 / 10 1 − 1 / 10 = 7 9 . {\displaystyle 0.7777\ldots \;=\;{\frac {a}{1-r}}\;=\;{\frac {7/10}{1-1/10}}\;=\;{\frac {7}{9}}.}

Công thức này không những có thể áp dụng cho những số thập phân với 1 chữ số tuần hoàn, mà nó có thể áp dụng cho cả 1 cụm nhiều số tuần hoàn:

0.123412341234 … = a 1 − r = 1234 / 10000 1 − 1 / 10000 = 1234 9999 . {\displaystyle 0.123412341234\ldots \;=\;{\frac {a}{1-r}}\;=\;{\frac {1234/10000}{1-1/10000}}\;=\;{\frac {1234}{9999}}.}

Từ đó có thể rút ra được cách biến đổi đơn giản hơn:

0.09090909 … = 09 99 = 1 11 . {\displaystyle 0.09090909\ldots \;=\;{\frac {09}{99}}\;=\;{\frac {1}{11}}.} 0.143814381438 … = 1438 9999 . {\displaystyle 0.143814381438\ldots \;=\;{\frac {1438}{9999}}.} 0.9999 … = 9 9 = 1. {\displaystyle 0.9999\ldots \;=\;{\frac {9}{9}}\;=\;1.}

Tính diện tích của parabol bằng phương pháp Archimedes

Archimedes chia phần parabol thành vô số tam giác.

Archimedes đã sử dụng công thức tính tổng của một chuỗi hình học để tính diện tích được bao bởi một parabol và một đường thẳng (cát tuyến). Phương pháp của ông là chia phần diện tích này thành vô số các hình tam giác.

Archimedes đã tính ra rằng tổng phần diện tích trong parabol bằng 4/3 diện tích của tam giác màu xanh dương.

Archimedes xác định rằng diện tích mỗi tam giác màu xanh lá cây bằng 1/8 diện tích hình tam giác màu xanh dương, diện tích tam giác màu vàng bằng 1/8 diện tích tam giác màu xanh lá cây, và v.v.

Giả sử tam giác màu xanh dương có diện tích 1, thì tổng diện tích là tổng của một chuỗi vô hạn:

1 + 2 ( 1 8 ) + 4 ( 1 8 ) 2 + 8 ( 1 8 ) 3 + ⋯ . {\displaystyle 1\,+\,2\left({\frac {1}{8}}\right)\,+\,4\left({\frac {1}{8}}\right)^{2}\,+\,8\left({\frac {1}{8}}\right)^{3}\,+\,\cdots .}

Số hạng đầu tiên là diện tích tam giác màu xanh dương, số hạng tiếp theo là diện tích 2 tam giác màu xanh lục, số hạng kế tiếp là diện tích 4 tam giác màu vàng, và cứ thế cho đến vô cùng. Rút gọn các phân số, ta có:

1 + 1 4 + 1 16 + 1 64 + ⋯ . {\displaystyle 1\,+\,{\frac {1}{4}}\,+\,{\frac {1}{16}}\,+\,{\frac {1}{64}}\,+\,\cdots .}

Đây là một chuỗi hình học với công bội bằng 1/4:

∑ n = 0 ∞ 4 − n = 1 + 4 − 1 + 4 − 2 + 4 − 3 + ⋯ = 4 3 . {\displaystyle \sum _{n=0}^{\infty }4^{-n}=1+4^{-1}+4^{-2}+4^{-3}+\cdots ={4 \over 3}.\;}

Tổng là:

1 1 − r = 1 1 − 1 4 = 4 3 . {\displaystyle {\frac {1}{1-r}}\;=\;{\frac {1}{1-{\frac {1}{4}}}}\;=\;{\frac {4}{3}}.}     (đơn vị diện tích).

Phép tính trên gọi là phương pháp vét cạn, là một dạng sơ khai của tích phân. Trong vi tích phân hiện đại, phần diện tích này có thể tính bằng tích phân xác định.

Hình học phân dạng

Bông tuyết Koch được tạo ra bởi một tổ hợp gồm vô số tam giác đều.

Trong ngành hình học phân dạng, chuỗi hình học thường dùng để tính chu vi, diện tích, hay thể tích của một hình tự đồng dạng.

Ví dụ, phần diện tích bên trong bông tuyết Koch là một tổ hợp gồm vô số tam giác đều (xem hình). Mỗi tam giác xanh lục có cạnh bằng 1/3 cạnh của tam giác xanh dương, do đó diện tích của nó bằng 1/9 diện tích tam giác xanh dương. Tương tự như thế, mỗi tam giác màu vàng có diện tích bằng 1/9 diện tích tam giác lục, và cứ thế. Cho diện tích tam giác xanh dương bằng 1 đơn vị diện tích, thì tổng diện tích của hình bông tuyết sẽ là:

1 + 3 ( 1 9 ) + 12 ( 1 9 ) 2 + 48 ( 1 9 ) 3 + ⋯ . {\displaystyle 1\,+\,3\left({\frac {1}{9}}\right)\,+\,12\left({\frac {1}{9}}\right)^{2}\,+\,48\left({\frac {1}{9}}\right)^{3}\,+\,\cdots .}

Phần tử đầu tiên của chuỗi này chính là diện tích tam giác xanh dương, phần tử thứ 2 là tổng diện tích của 3 tam giác xanh lục, phần tử thứ 3 là tổng diện tích của 12 tam giác màu vàng, và cứ thế. Với số đầu tiên là 1 không thuộc vào chuỗi hình học, phần còn lại trong chuỗi số trên là một chuỗi hình học có công bội r = 4/9, phần tử đầu tiên của chuỗi hình học này là a = 3(1/9) = 1/3, vậy tổng của cả chuỗi trên sẽ là:

1 + a 1 − r = 1 + 1 3 1 − 4 9 = 8 5 . {\displaystyle 1\,+\,{\frac {a}{1-r}}\;=\;1\,+\,{\frac {\frac {1}{3}}{1-{\frac {4}{9}}}}\;=\;{\frac {8}{5}}.}

Do đó diện tích của cả bông tuyết Koch bằng 8/5 lần diện tích tam giác cơ bản (xanh dương).

Những nghịch lý Zeno

Bài chi tiết: Những nghịch lý Zeno

Sự hội tụ trong chuỗi hình học cho thấy rằng tổng của một chuỗi có số phần tử là vô hạn vẫn có thể hữu hạn, điều này cho phép giải quyết được nhiều nghịch lý Zeno. Ví dụ như trong nghịch lý chia đôi quãng đường của Zeno, ông cho rằng một người (H) không thể đi đến một điểm B cách đó 1 quãng s, vì trước khi đi đến B thì H phải đi qua điểm s/2, mà trước khi qua điểm s/2 thì H phải qua được điểm s/4, trước khi qua s/4 thì phải qua s/8, trước khi qua s/8 thì phải qua s/16, và cứ thế đến vô cùng.

H − B 8 − B 4 − − − B 2 − − − − − − − B {\displaystyle H-{\frac {B}{8}}-{\frac {B}{4}}---{\frac {B}{2}}-------B}

Biểu diễn dạng chuỗi toán học:

{ ⋯ , 1 16 , 1 8 , 1 4 , 1 2 , 1 } {\displaystyle \left\{\cdots ,{\frac {1}{16}},{\frac {1}{8}},{\frac {1}{4}},{\frac {1}{2}},1\right\}}

Do đó, muốn đến được điểm B thì H phải qua vô số bước, Zeno cho rằng điều này không thể hoàn thành được và cũng không thể bắt đầu được, do đó ông cho rằng mọi chuyển động phải là ảo tưởng. Sai lầm của Zeno là ông đã giả định rằng tổng của vô hạn các phần tử hữu hạn (thời gian thực hiện 1 bước) không thể là một số hữu hạn (tổng thời gian đi đến B). Điều này không đúng với sự thật, vì bằng chứng là chuỗi hình học trên có thể hội tụ với công bội r = 1 / 2 {\displaystyle r=1/2} .

Euclid

Trong sách Cơ sở của Euclid, quyển IX, mệnh đề 35[1], có đưa ra công thức tính tổng của chuỗi hình học, công thức này tương đương với công thức hiện đại.

Kinh tế học

Trong kinh tế học, chuỗi hình học dùng để tính giá trị hiện tại của chuỗi tiền tệ (tổng của số tiền được trả theo định kỳ).